

Subject Content

- You lot!
- Enrolments (145 as at time of writing) far exceed expectations
- Made standard tutorial impossible
- Instead
- 2 hour lecture each week
- 1 hour devoted to
- General Discussion
- Discussion of assigned readings each week

Subject Content

- From the (economist's) armchair to the (psychologist's) couch...
- Most neoclassical economic theory "a priori":
- "A rational person behaves as follows..."
- "How do markets populated by rational traders behave?"
- This subject inherently empirical
- "How do actual people behave?"
- "How do actual markets behave?"

Putting economics in the couch

- Just how "rational" is economics?

Subject Content

- Broad outline of topics to be covered:
- Behaviour in Economics
- What is "Rational" Behaviour in economic theory?
- Reassessing conventional microeconomics
- Reassessing conventional finance
- Behavioural Finance proper
- Power Laws and Fat Tails: Market manifestations of actual investor behaviour
- Behavioural Macroeconomics
- Endogenous money: the data
- Dynamics of a credit-driven cyclical economy
- Financial Instability
- Endogenous Money
- The Global Financial Crisis

Assessment

1. Weekly reviews of (at least) 2 readings (20\% total)

- 2 readings chosen at random for you on vUWS
- Write detailed notes on these and save to vUWS site (as well as on own PC!)
- Full marks (2 out of 2 for each of 10 weeks) given simply if obvious you have read readings
- Do them well not because they are marked but because reading them is
- Worthwhile in their own right
- Good preparation for essay and final exam

2. Essay (20% total, due October $1^{\text {st }}$)
3. Final Exam (60% total)

Essay

- Focuses on core idea in this subject
- What economists call "rational" is not necessarily rational:
- "What respectively are rational and irrational behaviour?
- Consider ordinary language, psychology, computer science and economics-based usages of the terms.
- Having refined your own definition, estimate the degree to which, in your opinion, the behaviour of stock market investors is driven by rational and irrational behaviours.
- If possible, provide empirical support for your opinion."
- Set readings essential for essay

Behaviour in Economics

- "A priori" economic notions about behaviour
- Micro
- Consumers maximise utility subject to budget
- Firms maximise profits subject to demand
- Markets converge to supply=demand equilibrium
- Macro
- Agents in economy have "rational expectations"
- Economy in "rational expectations equilibrium"
- Finance
- Investors maximise expected returns subject to investment opportunities
- Asset market prices reflect correctly anticipated discounted future cash flows..

Behaviour in Economics

- Theorising about rationality in other disciplines very different
- Analyse actual behaviour
- Build theories of mind that replicate observed behaviour
- No a priori tagging of observed behaviour as "rational" or "irrational"
- Empirical research generally finds economic a priori model does not fit actual behaviour
- So most people are "irrational"?
- Or is the economic definition of "rational" wrong?
- Re-capping standard economic theory-firstly, demand..

Neoclassical Micro-Utility Maximising Consumers

Consumers assumed to be "rational utility maximisers"

- "Rational" consumer assumed to obey these rules:
- "Completeness"
- Given any 2 bundles of commodities A \& B, consumer can decide whether prefers A to B $(A \succ B), B$ to $A(B \succ A)$, or is indifferent between them ($B \approx A$)
- "Transitivity"
- If $(A \succ B)$ and $(B \succ C)$ then $(A \succ C)$
- "Non-satiation"
- More is preferred to less
- "Convexity"
- Marginal utility positive but falling as consumption of any good rises

Neoclassical Micro-Utility Maximising Consumers

- Upshot: consumer's preferences can be represented by a utility surface:

- "Indifference curves"
- Each curve joins points that give consumer equal satisfaction
- All points on higher curve give more satisfaction than any on lower
- More is always better

Neoclassical Micro-Utility Maximising Consumers

Initial objections to (Samuelson 1938: "A Note on the Pure Theory of Consumer's Behaviour") theory

- Indifference curves unobservable
- Shouldn't base science on unobservable entities
- Samuelson's solution: theory of "revealed preference" (Samuelson 1948 "Consumption Theory in Terms of Revealed Preference")
- Indifference curves can be inferred from observed behaviour
- Simplest instance: more is preferred to less so...

Neoclassical Micro—Utility Maximising Consumers

Next stage: deriving rational consumer's demand function from indifference map:

- The "Law of Demand":
- Consumption of a good rises as its price falls
- One problem: some goods
 can be so undesirable that consumption falls as price falls
- "Giffen Goods" (potatoes in Ireland during famine)

Neoclassical Micro-Utility Maximising Consumers

- Income effect from lower price
- Can consume more of all commodities because fall in price of one while income constant means increase in real income
- Can overwhelm substitution effect
- Buy more of a good as its price rises
- Solution: "Hicksian compensated demand curves"
- IF consumer income was reduced to cancel out income effect THEN all such demand curves would be downward sloping:

Neoclassical Micro-Utility Maximising Consumers

- Procedure to derive Hicksian compensated curve:
- Consider initial budget line aa
- Consumer chooses combination A on indifference curve X
- Now consider new relative price $a b$ - Consumer chooses combination B on indifference curve Y
- Move new budget line back till tangential to original indifference curve X
- Point of tangency is combination C - Substitution effect only: consumer necessarily consumes more Bananas when price of bananas falls
- "Law of Demand" restored

Neoclassical Micro-Utility Maximising Consumers

- Next step-aggregate from single consumer to all consumers in a market..

 demand curve

- Quick marks bonus:
- 5 marks to anyone who can find any discussion of this aggregation issue in any undergraduate microeconomics textbook; AND
- 5 marks to first 5 people to document where 5 undergraduate text should discuss this and don't

That's the theory...

- How does it stack up in reality?
- Samuelson's "Revealed Preference" argues indifference curves can be inferred from behaviour
- Sippel (1997) tried to test this
- Very careful experimental design
- Numerous previous experiments "sloppy" in some way
- E.g. Household expenditure surveys [Koo (1963),

Mossin (1972) and Mattei (1994)] subject to change in preferences over time

- Study of inmates in a psychiatric hospital... to see if they were rational??? [Battalio (1973)]
- Even of rats (too see is they were human???) - In contrast, Sippel:

Testing Revealed Preference

- Used university students as subjects
- Presented with
- A budget constraint
- A set of 8 commodities from which to choose:

Good	Max. Amount (if all budget spent on one good)
Video clips	$30-60$ minutes
Computer games	$27.5-60$ minutes
Magazines	$30-60$ minutes
Coca cola	$400 \mathrm{ml}-2$ litres
Orange juice	$400 \mathrm{ml}-2$ litres
Coffee	$600 \mathrm{ml}-2$ litres
Candy	$400 \mathrm{gms}-2$ kilos
Pretzels, peanuts	$600 \mathrm{gm}-2$ kilos

Testing Revealed Preference

- Unlimited time to choose preferred bundle
- Test repeated ten times with different relative prices, budget constraints
- One of preferred bundles from each of tests chosen at random for student to consume in one hour after test
Clearly were expressing preferences between bundles:
- "There can be no doubt that the subjects tried to select a combination of goods that came as close as possible to what they really liked to consume given the respective budget constraints.
- They spent a considerable amount of time on their decisions (typically 30-40 minutes) and repeatedly corrected entries on some of their order sheets when they reconsidered previous choices."

Testing Revealed Preference

Key propositions being tested:

- "Weak Axiom of Revealed Preference" WARP
- If $A \succcurlyeq B$ then never $B \succcurlyeq A$
- If consumer chooses bundle A once when B also affordable, then consumer will always choose A instead of B, regardless of relative prices
- "Strong Axiom of Revealed Preference" SARP
- If $A \succcurlyeq B \& B \succcurlyeq C$ then never $C \succcurlyeq A$
- Formal definition of a utility maximiser
- "Generalised Axiom of Revealed Preference" GARP
- If $A \succcurlyeq B \& B \succcurlyeq C$ then $p_{c}{ }^{*} A \geqq p_{c}{ }^{*} C$
- If $A \succcurlyeq B \& B \succcurlyeq C$ then A more expensive than set C at prices when C declined in favour of B

Testing Revealed Preference

- XInitial budget line
- Consumer chooses A when A \& B both affordable
- Rational consumer "should" always prefer A to B
But in experiments they don't do this! Sometimes, they choose B instead of A

Testing Revealed Preference

- Results first experiment (12 subjects)
- 11 of 12 subjects violated SARP \& WARP
- 5 out of 12 violated weaker test GARP
- Results second experiment (30 subjects)
- 22 of 30 subjects violated SARP \& WARP
- 19 of 30 violated weaker test GARP

$\begin{array}{\|l} \hline \text { Exp. } \\ 1 \& 2 \end{array}$	Consistent \%	Inconsistent \%	Number of violations per person (max possible 45)						
			1-2	3-4	5-6	7-8	9-10	11-20	> 20
SARP	8.3	91.7	7	3	-	-	-		1
GARP	58.3	41.7	3	1	-	-	-	1	-
SARP	26.7	73.3	7	4	-	1	4	3	3
GARP	36.7	63.3	8	1	2	3	1	1	3

Testing Revealed Preference

Sippel's interpretation of results

- In general "not too favourable to the neoclassical theory of consumer behaviour..." (p. 1438); but
- Low number of inconsistencies (median 2 out of 45-but average higher)
- Subjects did try to "select a combination of goods that came as close as possible to what they really liked to consume given their respective budget constraints" (1439)
- "They spent a considerable amount of time on their decisions (typically 30-40 minutes)"
- How serious are violations of axioms?...

Testing Revealed Preference

- Use waste of income from inconsistent choice as guide to how significant were deviations from "rationality":
- Afriat index: ratio ($p_{B} * A / p_{B} * B$) when (from previous experimental round) $A \succcurlyeq B$
- Where consumer chooses A when B affordable, use formula " $A \succcurlyeq B$ if $\left(e^{*} p_{A}{ }^{*} A\right) \geqq\left(p_{A}{ }^{*} B\right)$ "
- Consumer deemed to prefer A over B if A (say) 11% more expensive than B \& consumer still chooses A (here e=0.9)
- Like having "thicker indifference curves"

Testing Revealed Preference

- With thicker indifference curves, more combinations are shown as "indifferent":
- $e=1: C \succcurlyeq B \succcurlyeq A$
- $e=.95: C \succcurlyeq B$ \& A but $B \approx A$
- Choosing A or B appears "rational" for $e=.95$ but not
 for $e=1$
- The "good" news: number of apparent violations of GARP dropped significantly for $e<1$
- The "bad" news: even "throwing a dart"-totally random choice-appeared rational for e<0.95!
For e=.9, random choice appeared more rational than what human subjects did!

Testing Revealed Preference

- Several other careful attempts to interpret results
- But overall judgment:
- "We conclude that the evidence for the utility maximisation hypothesis is at best mixed.
- While there are subjects who do appear to be optimising, the majority of them do not...
- we ... call the universality of the maximising principle into question." (1442)
- So if people aren't maximising their $\mu+$ lity, what are they doing?
- Are they being "irrational"?
- It's the neoclassical definition of rational behaviour that is irrational!
- Let's check basic assumptions of model:

```
Computational complexity & rationality
    - }100\mathrm{ combinations
    - Some you ignore
    - Others you can't..
        10 pairs
        - 10 budget sums
        10 utility comparisons
        Easy!
        But what about when
        you add another good?
```

Computational complexity \& rationality

- How to represent additional good on indifference map? - Have to add an additional axis
- Every additional commodity adds another dimension.
- With no more than 10 units of each:

Reconsidering Revealed Preference

- Even if discretise choice and consider 5 combinations per good ($0,15,30,45,60$ minutes of video etc.)
- There are 5^{8} combinations to consider:
- 390,625 different combinations!
- Combo 1: 15 min video, 30 min game, 45 min
magazine, 500 g cola, 250 g orange juice, 500 g
coffee, 1 kg Haribo, 200 g snacks
- Combo 2: 30 min video, 45 min game, 0 min magazine, 1 litre cola, 500 g orange juice, 0 coffee, 500 g Haribo, 500 g snacks
- Which do you prefer?..
- Impossible to differentiate finely-instead tend to consider one or two items you like and ignore rest

Reconsidering Revealed Preference

- Is this irrational?
- According to revealed preference/utility theory, yes
- In real life, no!
- Reality is bewildering array of choices
- Difficulty is not choosing best option, but making satisfactory choice in finite time
- Consider simple shopping trip:
- (say) 100 items you could buy at supermarket
- Buy either 0 or 1 units of each
- How many different combinations to compare?
- $2^{100}=1,267,650,600,228,229,401,496,703,205,376$!
- That's one million trillion trillion different combinations

Reconsidering Revealed Preference

- Revealed preference/Indifference curves a "toy" model
- Looks good on paper
- Can't possibly scale to reality
- Consumption an "exponential complexity" problem:
- Number of combinations scales exponentially as additional commodities considered
- To buy or not to buy decision a 2^{n} problem:
- 2 choices, zero or one unit
- n combinations for n commodities...
- Put revealed preference function in computer
- Program it to find highest utility combination...
- If calculating utility of a bundle takes $10^{-7} \mathrm{sec}$.:

Reconsidering Revealed Preference

- Working out optimal bundle would take..

- Neoclassically "rational" computer would take 3.5 years to choose utility maximising bundle in 50 commodity corner store..

Reconsidering Revealed Preference

What about a human "computer"?

- More to brain than neurones (discussed later), but
- Brain has 10^{11} neurones
- 100,000,000,000 (or 100 billion)
- Each neuron connects to 1,000 others
- Signalling between neurons basic operation in thinking, learning, deciding, acting
- Signals transmitted by voltage spikes
- Neuron takes 1 millisecond $\left(10^{-3}\right)$ to generate a spike
- Like computer transferring one bit of data from one register to another
- Actual decision by computer (in 10-7 example above) might take 100 such steps
- Likewise, many neuron signals needed to make basic action

Reconsidering Revealed Preference

- 50-100 milliseconds shortest time for actual perception ("That's a tube of toothpaste")
- 100 such perceptions would take at least 5 seconds
- So IF brain acted as massively parallel HCRP ("Human Computer Revealed Preference") machine
- which it doesn't
- AND if every decision took 5 seconds
- THEN "Human Computer" would operate at 5×10^{-11} seconds per RP decision
- So a HCRP would take...

Reconsidering Revealed Preference

- 2252 seconds to shop in a 50 commodity corner store!

"What if" each decision between bundles took minimum human perception time ($50 \mathrm{~ms}=5 \times 10^{-2}$) in massively parallel processing (10^{11} neurons), regardless of number of commodities in a bundle?

RP versus EP: EP wins every time...

- Decision speed then 0.5×10^{-12} :

- "To buy or not to buy" (0 or 1 of each commodity) RP shopping trip in 100-commodity store would take..
- 80,000,000,000 years...
- 6 times estimated age of universe (13.7 billion years)

RP versus EP: EP wins every time...

- Ranking bundles of goods with n commodities an "exponential problem"
- Number of comparisons scales exponentially with number of commodities
- Comparisons $=(1+\text { UnitsBought })^{\text {NumberCommodities }}$
- In our example-buy or not buy one item in 50 commodity shop:
- Comparisons $=2^{50}=1,125,899,906,842,624$
- (10 million billion different potential bundles)

Such problems inherently non-computable:

- Simply impossible for any program on any computer to find highest utility combination in finite time
- "Consider all options" Computing (and by inference deductive thinking) restricted to "polynomial problem"

RP versus EP: EP wins every time...

- Definitive (optimum) programs must run in polynomial time
- e.g., "bubble sort algorithm": sort list of n numbers:
- Select last ("pivot")
- Choose next to last ("pre-pivot") and another ("rand") at random
- If either larger than pivot
- Swap larger with pivot
- Move smaller to where larger was
- Repeat till all before pivot smaller than it
- Partition list into two and repeat

RP versus EP: EP wins every time...

- Worst case: (List starts in reverse order)
- algorithm takes n^{2} steps where n is length of list:
- $n=10: 100$ steps
- $n=1,000: 1,000,000$ steps
- $n=1,000,000: 1,000,000,000,000$ steps
- Still a lot, but do-able in finite time.

Average case: (List starts in purely random order)

- Takes $n \times \log (n)$ steps
- $n=10: 10$ steps
- $n=1,000: 3,000$ steps
- $n=1,000,000: 6,000,000$ steps

Best case: list already sorted, just n steps...

- 34 steps in previous example
- between $10^{2}=100$ and $10 \times \log (10)=10$

RP versus EP: EP wins every time...

- Simply isn't possible to "be rational" as economists define

$\begin{aligned} & \text { Algorithmic } \\ & \text { Complexity } \end{aligned}$	Example	Input size \& Number of Operations			
		10	20	50	100
n	Add up n numbers	10	20	50	100
n^2	Sort n numbers	100	400	2500	10000
$2^{\text {2n }}$	Utility n bundes ($0-1$ items)	1024	1048576	1.13E+15	
$4^{n} \mathrm{n}$	lity n bundes (0.3 item	8576	951E+12	1.27E+30	$1.61 \mathrm{E}+6$

- At a billion comparisons a second, a "Revealed Preference" shopping trip would take longer than the Age of Universe times the Age of the Universe:

Fractions of age of	Example	Input size			
Class				50	
	Add up n numbers	${ }^{2.315-26}$			
${ }^{\text {n } 22}$	Sortn numbers	$231 \mathrm{E}-25$	9.26E-25	5.79E-24	${ }^{2.315-23}$
${ }^{2}{ }_{4}^{2 n_{n} n_{n}}$		${ }_{\text {243F-24 }}^{2.37 \mathrm{E}}$		${ }_{3}^{2} 4.618598912$	

- Bottom line: Neoclassical theory of rational behaviour falls over at first step
- "Completeness" axiom computationally impossible...

Theory vs Reality

- Even attempting to utility-maximise is irrational in a world with more than 20 commodities
- Computational complexity overwhelms optimising
- "If the brain is performing computation, it should obey the laws of computational theory.
- These results come from two areas, computability and complexity, and can be paraphrased as follows:

1. You cannot compute nearly all the things you want to compute. [Godel/Turing proof that most things can't be proven-not discussed here]
2. The things you can compute are too expensive to compute. [as shown]" (Ballard 2000, p. 6)

- i.e., exact (optimal) answers to anything complex are impossible to achieve; and even shopping is complex!

Goodbye Revealed Preference

- Can't characterise that behaviour using "indifference curves" and "budget lines"
- Normal behaviour must violate Revealed Preference model because Revealed Preference behaviour is computationally impossible.
- True "rational behaviour" for real-world consumers is - Making a satisfactory consumption decision in finite time
- Next:
- Even if revealed preference did work...
- Market demand curves can't be downward-sloping...

