Behavioural Finance

<u>Lecture 01</u> Behaviour in Economics

Subject Content

• You lot!

- Enrolments (145 as at time of writing) far exceed expectations
 - $\boldsymbol{\cdot}$ Made standard tutorial impossible
 - Instead
 - 2 hour lecture each week
 - 1 hour devoted to
 - General Discussion
 - Discussion of assigned readings each week

Subject Content

- From the (economist's) armchair to the (psychologist's) couch...
 - Most neoclassical economic theory "a priori":
 - "A rational person behaves as follows..."
 - "How do markets populated by rational traders behave?"
 - This subject inherently empirical
 - "How do actual people behave?"
 - "How do actual markets behave?"
- Putting economics in the couch
 - Just how "rational" is economics?

Subject Content

- Broad outline of topics to be covered:
 - Behaviour in Economics
 - What is "Rational" Behaviour in economic theory?
 - Reassessing conventional microeconomics
 - Reassessing conventional finance
 - Behavioural Finance proper
 - Power Laws and Fat Tails: Market manifestations of actual investor behaviour
 - Behavioural Macroeconomics
 - Endogenous money: the data
 - Dynamics of a credit-driven cyclical economy
 - Financial Instability
 - Endogenous Money
 - The Global Financial Crisis

Assessment

- 1. Weekly reviews of (at least) 2 readings (20% total)
 - 2 readings chosen at random for you on vUWS
 - Write detailed notes on these and save to vUWS site (as well as on own PC!)
 - Full marks (2 out of 2 for each of 10 weeks) given simply if obvious you have read readings
 - Do them well not because they are marked but because reading them is
 - Worthwhile in their own right
 - Good preparation for essay and final exam
- 2. Essay (20% total, due October 1st)
- 3. Final Exam (60% total)

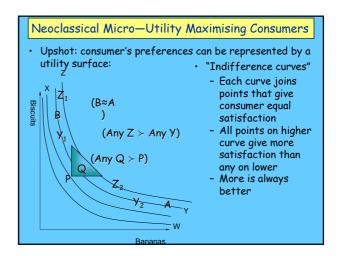
Essay

Focuses on core idea in this subject

- What economists call "rational" is not necessarily rational:
 - "What respectively are rational and irrational behaviour?
 - Consider ordinary language, psychology, computer science and economics-based usages of the terms.
 - Having refined your own definition, estimate the degree to which, in your opinion, the behaviour of stock market investors is driven by rational and irrational behaviours.
 - If possible, provide empirical support for your opinion."
- Set readings essential for essay

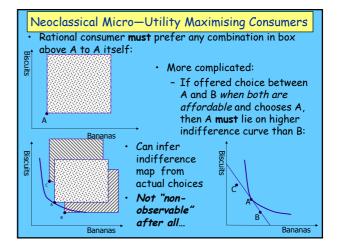
Behaviour in Economics

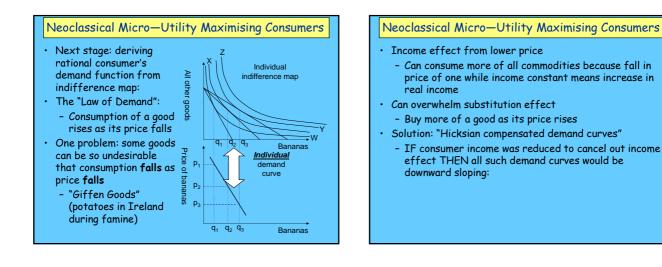
"A priori" economic notions about behaviour

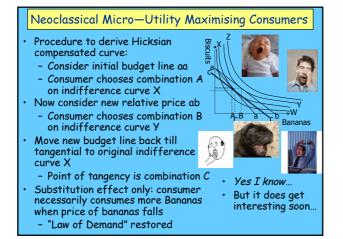

- Micro
 - Consumers maximise utility subject to budget
 - Firms maximise profits subject to demand
- Markets converge to supply-demand equilibrium
 Macro
- Macro
 - Agents in economy have "rational expectations"
 - Economy in "rational expectations equilibrium"
- Finance
 - Investors maximise expected returns subject to investment opportunities
 - Asset market prices reflect correctly anticipated discounted future cash flows...

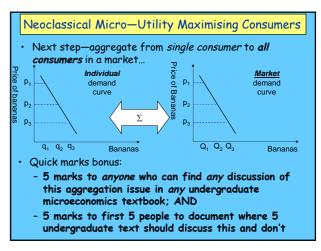
Behaviour in Economics

- Theorising about rationality in other disciplines very different
 - Analyse actual behaviour
 - Build theories of mind that replicate observed behaviour
 - No a priori tagging of observed behaviour as "rational" or "irrational"
- Empirical research generally finds economic *a priori* model does not fit actual behaviour
 - So most people are "irrational"?
- Or is the economic definition of "rational" wrong?
- Re-capping standard economic theory—firstly, demand...


Neoclassical Micro—Utility Maximising Consumers


- Consumers assumed to be "rational utility maximisers"
 - "Rational" consumer assumed to obey these rules:
 "Completeness"
 - Given any 2 bundles of commodities A & B, consumer can decide whether prefers A to B (A≻B), B to A (B≻A), or is indifferent between them (B≈A)
 - "Transitivity"
 - If (A≻B) and (B≻C) then (A≻C)
 "Non-satiation"
 - More is preferred to less
 - "Convexity"
 - Marginal utility positive but falling as consumption of any good rises




Neoclassical Micro—Utility Maximising Consumers

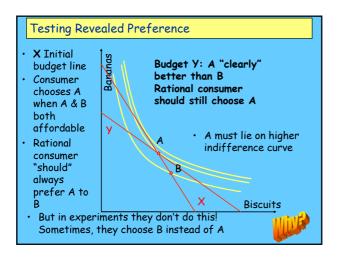
- Initial objections to (Samuelson 1938: "A Note on the Pure Theory of Consumer's Behaviour") theory
 - Indifference curves unobservable
 - Shouldn't base science on unobservable entities
 - Samuelson's solution: theory of "revealed preference" (Samuelson 1948 "Consumption Theory in Terms of Revealed Preference")
 - Indifference curves can be *inferred* from observed behaviour
 - Simplest instance: more is preferred to less so...

That's the theory...

- How does it stack up in reality?
 - Samuelson's "Revealed Preference" argues indifference curves can be inferred from behaviour
 - Sippel (1997) tried to test this
 - Very careful experimental design
 - Numerous previous experiments "sloppy" in some way
 - E.g. Household expenditure surveys [Koo (1963), Mossin (1972) and Mattei (1994)] subject to change in preferences over time
 - Study of inmates in a psychiatric hospital... to see if they were rational??? [Battalio (1973)]
 - Even of rats (too see is they were human???)
 - In contrast, Sippel:

Testing Revealed Preference					
 Presented with A budget of 					
Good	Max. Amount (if all budget spent on one good)				
Video clips	30-60 minutes				
Computer games	27.5-60 minutes				
Magazines	30-60 minutes				
Coca cola	400ml-2 litres				
Orange juice	ange juice 400ml-2 litres				
Coffee	600ml-2 litres				
Candy	y 400gms-2 kilos				
Pretzels, peanuts	600gm-2 kilos				

Testing Revealed Preference


- · Unlimited time to choose preferred bundle
- Test repeated ten times with different relative prices, budget constraints
- One of preferred bundles from each of tests chosen at random for student to consume in one hour after test
- Clearly were expressing preferences between bundles: "There can be no doubt that the subjects tried to
 - select a combination of goods that came as close as possible to what they really liked to consume given the respective budget constraints.
 - They spent a considerable amount of time on their decisions (typically 30-40 minutes) and repeatedly corrected entries on some of their order sheets when they reconsidered previous choices."

Testing Revealed Preference

Key propositions being tested:

- "Weak Axiom of Revealed Preference" WARP • If $A \geq B$ then never $B \geq A$
 - If consumer chooses bundle A once when B also affordable, then consumer will always choose A instead of B, regardless of relative prices
- "Strong Axiom of Revealed Preference" SARP
- If $A \geq B \& B \geq C$ then never $C \geq A$
- Formal definition of a utility maximiser - "Generalised Axiom of Revealed Preference" GARP

 - If $A \ge B \& B \ge C$ then $p_C * A \ge p_C * C$
 - If $A \ge B \& B \ge C$ then A more expensive than set
 - C at prices when C declined in favour of B

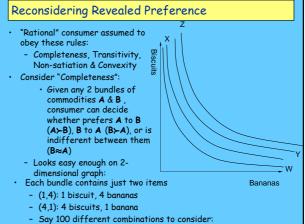
Testing Revealed Preference									
 Results first experiment (12 subjects) 11 of 12 subjects violated SARP & WARP 5 out of 12 violated weaker test GARP Results second experiment (30 subjects) 22 of 30 subjects violated SARP & WARP 19 of 30 violated weaker test GARP 									
Exp. 1 & 2	Consistent %	Inconsistent %	Number of violations per person (max possible 45)						
			1-2	3-4	5-6	7-8	9-10	11-20	> 20
SARP	8.3	91.7	7	3	-	-	-	-	1
GARP	58.3	41.7	3	1	-	-	-	1	-
SARP	26.7	73.3	7	4	-	1	4	3	3
GARP	36.7	63.3	8	1	2	3	1	1	3

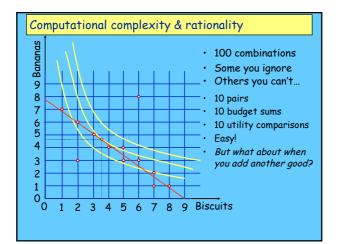
Testing Revealed Preference

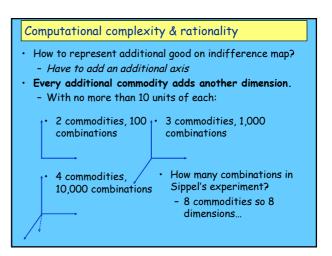
- Sippel's interpretation of results
 - In general "not too favourable to the neoclassical
 - theory of consumer behaviour ... " (p. 1438); but Low number of inconsistencies (median 2 out of
 - 45—but average higher) $\boldsymbol{\cdot}$ Subjects did try to "select a combination of goods that came as close as possible to what they really
 - liked to consume given their respective budget constraints" (1439) • "They spent a considerable amount of time on their
 - decisions (typically 30-40 minutes)"
 - How serious are violations of axioms?...

Testing Revealed Preference

- Use waste of income from inconsistent choice as guide to how significant were deviations from "rationality":
- Afriat index: ratio ($p_B * A / p_B * B$) when (from previous experimental round) $A \geqslant B$
- Where consumer chooses A when B affordable, use formula "A \succcurlyeq B if (e * p_A * A) \geqq (p_A * B)"
 - Consumer deemed to prefer A over B if A (say) 11% more expensive than B & consumer still chooses A (here e=0.9)
 - · Like having "thicker indifference curves"


Testing Revealed Preference


- With thicker indifference curves, more combinations are shown as "indifferent":
- e=1: $C \ge B \ge A$
- e=.95: $C \ge B \& A$ but $B \approx A$
- Choosing A or B appears "rational" for e=.95 but not for e=1
- The "good" news: number of apparent violations of GARP dropped significantly for e<1
- The "bad" news: even "throwing a dart"—totally random choice—appeared rational for e<0.95!
- For e=.9, random choice appeared more rational than what human subjects did!

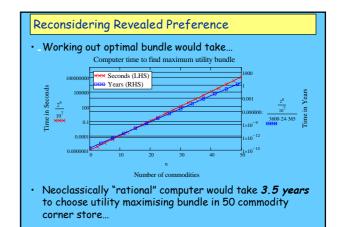

		imental subjects ating GARP	% of times randomly chosen set violated GARP		
e	<u>Exp 1</u>	<u>Exp 2</u>	<u>Exp 1</u>	<u>Exp 2</u>	
1	41.7	63.3	61.3	97.3	
.99	25	26.7	46.8	65.2	
.95	8.3	10	16.8	12.8	
.90	8.3	3.3		evel o 9.4 iolations andom choice!	

Testing Revealed Preference "Rational" consumer assumed to · Several other careful attempts to interpret results obey these rules: But overall judgment: Completeness, Transitivity, Non-satiation & Convexity "We conclude that the evidence for the utility maximisation hypothesis is at best mixed. Consider "Completeness": - While there are subjects who do appear to be • Given any 2 bundles of optimising, the majority of them do not ... commodities A & B, consumer can decide we ... call the universality of the maximising principle whether prefers A to B($A \succ B$), B to A ($B \succ A$), or is into question." (1442) So if people aren't maximising their utility, what are they indifferent between them doing? (B≈A) - Are they being "irrational"?

- It's the neoclassical definition of rational behaviour that is irrational!
- Let's check basic assumptions of model:

Reconsidering Revealed Preference

- Even if discretise choice and consider 5 combinations per good (0, 15, 30, 45, 60 minutes of video etc.)
- There are 5⁸ combinations to consider:
- 390,625 different combinations!
 - Combo 1: 15 min video, 30 min game, 45 min magazine, 500g cola, 250 g orange juice, 500g coffee, 1kg Haribo, 200 g snacks
 - Combo 2: 30 min video, 45 min game, 0 min magazine, 1 litre cola, 500 g orange juice, 0 coffee, 500g Haribo, 500 g snacks
 - Which do you prefer?...
 - Impossible to differentiate finely—instead tend to consider one or two items you like and ignore rest

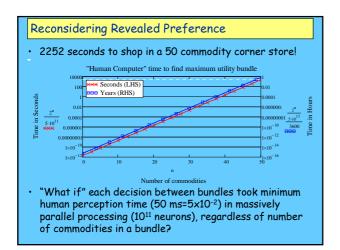

Reconsidering Revealed Preference

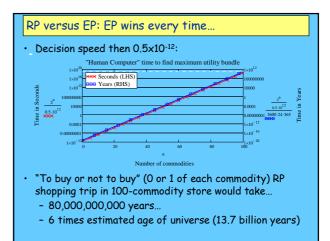
• Is this irrational?

- According to revealed preference/utility theory, yes
- In real life, no!
 - Reality is bewildering array of choices
 - Difficulty is not choosing best option, but making satisfactory choice in finite time
- Consider simple shopping trip:
 - (say) 100 items you could buy at supermarket
 - Buy either 0 or 1 units of each
 - How many different combinations to compare?
 2¹⁰⁰=1,267,650,600,228,229,401,496,703,205,376!
 - That's one million trillion trillion different combinations

Reconsidering Revealed Preference

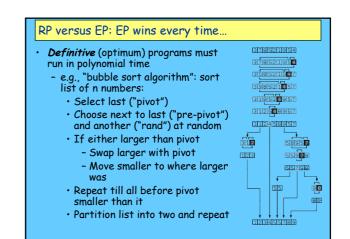
- Revealed preference/Indifference curves a "toy" model
 - Looks good on paper
 - Can't possibly scale to reality
 - Consumption an "exponential complexity" problem:
 Number of combinations scales exponentially as additional commodities considered
 - To buy or not to buy decision a 2ⁿ problem:
 - 2 choices, zero or one unit
 - n combinations for n commodities...
 - Put revealed preference function in computer
 - Program it to find highest utility combination...
 - If calculating utility of a bundle takes 10⁻⁷ sec.:

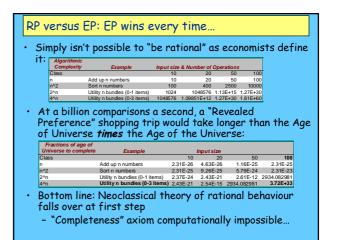

Reconsidering Revealed Preference


What about a human "computer"?

- More to brain than neurones (discussed later), but
 Brain has 10¹¹ neurones
 - 100,000,000,000 (or 100 billion)
 - Each neuron connects to 1,000 others
 - · Each neuron connects to 1,000 others
 - Signalling between neurons basic operation in thinking, learning, deciding, acting
- Signals transmitted by voltage spikes
 - Neuron takes 1 millisecond (10⁻³) to generate a spike
 Like computer transferring one bit of data from
 - one register to another - Actual decision by computer (in 10-7 example above) might take 100 such steps
 - Likewise, many neuron signals needed to make basic action

Reconsidering Revealed Preference


- 50-100 milliseconds shortest time for actual perception ("That's a tube of toothpaste")
- 100 such perceptions would take at least 5 seconds
- So IF brain acted as massively parallel HCRP ("Human Computer Revealed Preference") machine
 which it doesn't
- · AND if every decision took 5 seconds
- THEN "Human Computer" would operate at 5×10^{-11} seconds per RP decision
- So a HCRP would take...


RP versus EP: EP wins every time...

- Ranking bundles of goods with n commodities an "exponential problem"
 - Number of comparisons scales exponentially with number of commodities
 - Comparisons = (1+UnitsBought)^{NumberCommodities}
 - In our example—buy or not buy one item in 50 commodity shop:
 - Comparisons = 2⁵⁰=1,125,899,906,842,624
 (10 million billion different potential bundles)
- Such problems inherently non-computable:
 - Simply impossible for any program on any computer to find highest utility combination in finite time
 - "Consider all options" Computing (and by inference deductive thinking) restricted to "polynomial problem"

RP versus EP: EP wins every time ...

- Worst case: (List starts in reverse order)
- algorithm takes n² steps where n is length of list:
 n=10: 100 steps
 - n=1,000: 1,000,000 steps
 - n=1,000; 1,000,000 steps
 n=1,000,000; 1,000,000,000,000 steps
 - Still a lot, but do-able in finite time...
- Average case: (List starts in purely random order)
 - Takes n x log(n) steps
 - n=10: 10 steps
 - n=1,000: 3,000 steps
 - n=1,000,000: 6,000,000 steps
- Best case: list already sorted, just n steps...
- 34 steps in previous example
 - between 102=100 and 10 x log(10)=10

Theory vs Reality	
 Completeness" Given any 2 bundles of commodities A & B, consumer can decide whether prefers A to B (A>B), B to A (B>A), or is indifferent between them (B≈A) "Transitivity" "Non-satiation" "Convexity" All breached in practice because depend upon 	 Reality Capacity to compare fails even with 8 goods in bundle Computational overload means can't compare available bundles in finite time Satisfice" Choose satisfactory bundle "Prioritise" Concern most desirable item in bundle and ignore others "Habit" Buy as always with some change "Categorise" Purchase within categories Drastically reduces dimensionality of choice

Theory vs Reality

- Even attempting to utility-maximise is irrational in a world with more than 20 commodities
- Computational complexity overwhelms optimising
 "If the brain is performing computation, it should
 obey the laws of computational theory.
 - These results come from two areas, computability and complexity, and can be paraphrased as follows:
 - You cannot compute nearly all the things you want to compute. [Godel/Turing proof that most things can't be proven—not discussed here]
 - 2. The things you can compute are too expensive to compute. [as shown]" (Ballard 2000, p. 6)
- i.e., exact (optimal) answers to anything complex are impossible to achieve; and even shopping is complex!

Goodbye Revealed Preference

- Can't characterise that behaviour using "indifference curves" and "budget lines"
 - Normal behaviour must violate Revealed Preference model because Revealed Preference behaviour is computationally impossible.
 - True "rational behaviour" for real-world consumers is
 Making a satisfactory consumption decision in finite time
- Next:
 - Even if revealed preference did work...
 - Market demand curves can't be downward-sloping...