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Behavioural Finance

Lecture 05

Fractal Finance Markets

Recap

• Last week

– Data strongly contradicts Capital Assets Pricing Model

• Early apparent success a quirk

– Short data series analysed by Fama etc.

– Coincided with uncharacteristic market stability

– Market highly volatile

• Follows “Power Law” process

• Any size movement in market possible

Overview

• Market predominantly not random

• But pattern of market movements very hard to work out

• Fractal markets hypothesis

– Market dynamics follow highly volatile patterns

The dilemma

• CAPM explained difficulty of profiting from patterns in
market prices

– Via “Technical Analysis” etc.

• On absence of any pattern in market prices

– Fully informed rational traders

– Market prices reflect all available information

– Prices therefore move randomly

• Failure of CAPM

– Prices don’t behave like random process

• Implies there is a pattern to stock prices

– Question: if so, why is it still difficult to profit from
market price information

– Answer: Fractal Markets Hypothesis…

Fractals

• What’s a
fractal???

• A self-similar pattern in
data generated by a highly
nonlinear process…

• Remember irrational numbers?

– Solution to question “is the square root of 2 rational?”

• Equal to ratio of two integers?

– No!

• Fractals similar:

– Can we describe landscapes using standard solids?

• Solid cubes, rectangles, etc?

Fractals

• Does Mount Everest look like a triangle?

• Yes and No

– Not like a single pure triangle

– But maybe lots of irregular
triangles put together…

– Mandelbrot invented concept
of “fractals” to express this

• Real-world geography doesn’t look like standard solid
objects from Euclidean Geometry

– Squares, circles, triangles…

• But can simulate real-world objects by assembling lots
of Euclidean objects at varying scales…
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Fractals

• For example, simulate a mountain by manipulating a
triangle:

– Start with simple triangle

• Choose midpoints of three sides

• Move them up or down a random amount

• Create 4 new triangles;

11
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• Repeat

• Resulting pattern does look like a mountain…

Fractals

• Mandelbrot (who developed the term) then asked “How
many dimensions does a mountain have?”

– All “Euclidean” objects have integer dimensions:

• A line: 1 dimension

• A square: 2 dimensions

• A sphere: 3 dimensions

• Is a picture of a mountain 2 dimensional?

– Maybe; but to generate a 2D picture, need triangles of
varying sizes

• If use triangles all of same size, object doesn’t look
like a mountain

• So maybe a 2D photo of a mountain is somewhere
between 1 dimension and 2?

Fractals

• A single point has dimension zero (0):

• A rectangle has dimension 2:

• A straight line has dimension 1:

• How to work out “sensible” dimension for irregular
object like a mountain?

– Consider a stylised example: the Cantor set…

Fractals

• Take a line:

• Remove middle third:

• Repeat:

• Is the resulting pattern…

– 1 dimensional (like a solid line);

– 0 dimensional (like isolated points);

– Or somewhere in between?

• A (relatively) simple measure: “box-counting” dimension…

Fractals

• How many boxes of a given size does it take to cover the
object completely?

• Define box count so that Euclidean objects (point, line,
square) have integer dimensions

• Dimension of something like Cantor Set will then be
fractional: somewhere between 0 and 1

• Box-counting dimension a function of

– Number of boxes needed NN

– Size of each box  as smaller and smaller boxes used

• Measure is limit as size of box  goes to zero of
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• Apply this to an isolated point:

– Number of boxes needed—1, no matter how small

– 1/ goes to infinity as box gets smaller

Fractals

• Single point: =1=1
== ½½== ¼¼
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• Many points:

• Same result:

– Ln(N) equals number of points (here N=4; ln(4)=0.7)

– here =1/64; ln(1/)=4.2; tends to infinity as 0

– Any number divided by infinity is zero…

1/641/64
1/641/64

1/641/64

1/641/64

Line 1 unit longLine 1 unit long
One box: N=1, length=1One box: N=1, length=12 boxes: N=2,2 boxes: N=2, =1/2=1/2 2 boxes: N=2,2 boxes: N=2, =1/2=1/2

• N function of length of boxes: N=1/

• Dimension of line is 1 as required:
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• Works for a line too:
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Fractals

• What about Cantor set?

• Remove middle third:

• Repeat:

• Formula for each line is:

– Number of boxes (N) equals 2 raised to power of level

• Zeroth stage 20=1; 1st 21=2 boxes; 2nd stage 22=4…

– Length of box = (1/3) raised to power of level

• Zeroth (1/3)0=1; 1st (1/3)1=1/3; 2nd (1/3)2=1/9

• Dimension of Cantor set =

Line 1 unit longLine 1 unit long

One box: N=1, length=1One box: N=1, length=1

2 boxes: N=2,2 boxes: N=2, =1/3=1/3 2 boxes: N=2,2 boxes: N=2, =1/3=1/3

4 boxes4 boxes N=4=2N=4=222 =1/9=1/9 =(1/3)=(1/3)22
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Fractals

• So what’s this got to do with Stock Markets?

• Basic idea behind fractals is measuring roughness

– See Mandelbrot’s lecture at MIT on this

• Euclidean objects (points, lines, rectangles, spheres) are
“smooth”

– Slope changes gradually, everywhere differentiable

– Have integer dimensions

• Real objects are rough

– Slope changes abruptly, everywhere discontinuous

– Have fractal dimensions

• Stock Exchange data has “fractal” rather than “integer”
dimensions, just like mountains, Cantor Set, river flows…

• Let’s check it out:

Fractal Markets

• Raw DJIA daily change data is:
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• Pseudo-random data is:
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• Differences pretty obvious anyway!

– But let’s derive Box-Counting Dimension of both…

• First step, normalise to a 1 by 1 box in both directions:

Fractal Markets

• Data for working out Box Dimension now looks like this:
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• Now start dividing graph into boxes

• and count how many squares have data in them:

Fractal Markets

• 4 squares: =0.5, N=4 for both
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• 16 squares: =0.25…
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• N=13
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• 64 squares: =0.125…
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Fractal Markets

• Now write program to do
automatically what we saw:

– Break data into 8 by 8
squares

– Work out that 34 of
them have data in
them…

– Repeat for larger
number of squares…

count rows x( )

 matrix steps 1 f( )

Squares matrix steps 1 f( )

N matrix steps 1 f( )


0

1

Squares
0

1

N
0

1


i


i 1

2

trace "Eta is {0}" 
i

 

Squares
i

1 
i 2

start j 
i



end j 1( ) 
i

 


findmin start

findmax end

stack
j

sort submatrix x floor start count( ) ceil end count( ) 1 1 1( )( )

findmin 
i

k

findmax 
i

k 1( )

start data stack
j 

0


end data stack
j 

last stackj 


  1 start data findmin end data start data findmax end dataif

k 0
1


i

1for

j 0
1


i

1for

N
i



 0

i 1 steps 1for

augment  Squares N( )return

DJIADim
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0.5 4 4

0.25 16 13

0.125 64 34

0.0625 256 108

0.0313 1024 317

0.0156 4096 986

0.0078 16384 3150

0.0039 65536 10202

0.002 262144 33641


Correct!Correct!
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Fractal Markets

• Then apply box dimension rule:
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• So fractal dimension
of DJIA is roughly
1.67

• What about random
data?
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Fractals and Structure

• Truly random process has no structure

– Say 1st 3 tosses of coin = “Heads”

– Even though odds of 4 Heads in row very small (6/100)

– Odds next toss = “Heads” still ½

– Past history of tosses gives no information about next

• Fractal process has structure

– Some dynamic process explains much of movement

• But not all!

– Some truly random stuff as well in data

– But…

• Process may be impossible to work out;

• May involve interactions with other systems; and

• Even if can work it out, difficult to predict

Fractals and Structure

• An example: Logistic equation  
     2

1
1

t t t
L a L b L

• Developed to explain dynamics of animal populations

– Some “prey” animals (e.g. Lemmings, Red Crabs)

• Give birth on same day every (Lunar!) year

• Huge numbers born relative to population

– Survival tactic

• Big feast for predators on that day

• But most of prey survive because predators full!

– But tendency for population explosions/collapses

• Large number survive one year;

• Population exceeds land carrying capacity

• Big death levels too…

Fractals and Structure

• Logistic equation models this in 4 ways:

 
     2

1
1

t t t
L a L b L

t=year of birthst=year of births““DiscreteDiscrete”” time since birthstime since births
occur once each yearoccur once each year

High value for aHigh value for a——lots oflots of
children per adultchildren per adult

Negative b times LNegative b times L squaredsquared
captures overcrowdingcaptures overcrowding
effect on death rateeffect on death rate

• Can also be expressed as xt+1= xt(1-xt)

• System is realistic “toy” model

• Completely deterministic (no random noise at all); but

– Behaves “chaotically” for some values of a & b (& )

Chaos?

• One of several terms

– Chaotic

– Complex

• Used to describe

– Deterministic systems (maybe with some noise)

– That are highly unstable & unpredictable

– Despite existence of underlying structure…

• Lemmings as an example…
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Chaos

• For some values of a, a stable population:
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• For a=2, a cyclical population: up one year, down the next
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Chaos

• For higher value (a>2.5), a “4 cycle”

– Population repeats 4 values cyclically forever:
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• For higher value still (a>2.58), an “8 cycle”
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Chaos

• Ultimately, “chaos”
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• Population fluctuates forever—never at equilibrium

• No number ever repeats

• Even though model known precisely, can’t predict future

– Smallest error blown out over time…

Chaos

• Get
estimated
population
wrong by
1%;

• After
very few
cycles,
estimates
completely
wrong…
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for under
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Chaos & Complexity

• Many other instances of chaotic & complex systems

– Basic features:

• Current value depends on previous value

– Unlike random process, or EMH

• In a highly nonlinear way

– Subtracting square of number (Logistic)

– Two variables multiplied together (Lorenz)

• Patterns generated unpredictable

• But structure beneath apparent chaos

– “Self-similarity”

• One of earliest & most beautiful: the Mandelbrot Set

Mandelbrot Set

• A beautiful pattern…

Mandelbrot Set

• With “self-similarity”

– Zoom in on part

• The “whole” reappears there!
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Mandelbrot Set

• Generated by incredibly simple rule:

• Take a number Z

• Square it

• Add a constant

• If the magnitude of the
number exceeds 2, keep
going

• Otherwise stop

• Just one complication

– Z & C are “complex
numbers”: x+iy where 1i  

• Complex Numbers fundamental concept in physics

• Essential to understand cyclical systems (eg electricity)

• Represented on x-y plot

Complex Numbers!

• Real numbers on the horizontal

• “Imaginary” numbers (multiples of square root of minus
one) on the vertical:

0 1 2 3 …-3 -2 -1…
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i

…

• Mandelbrot function

– Takes one
coordinate on this
graph…

• Squares it

• Adds a constant

• If size of resulting
number > 2, keeps going

• Size then represented
as height above this
plane

• Shown normally as
colours…

Mandelbrot Set

• Black bits are parts where height is zero

• Coloured bits are where height > 0

Mandelbrot Set

• Actual object looks this this…
3D MANDALBROT

M

• Or side on, like this…
3D MANDALBROT

M

• Main relevance of chaos & complexity theory to
finance…

Chaos, Complexity & Finance

• Superficially random behaviour can actually have
deterministic causes

• If sufficiently strong feedbacks

– Subtract square of number of lemmings from number of
lemming births

– Two variables times each other in Lorenz

• System can display “chaos”

– Aperiodic cycles (“booms and busts”)

– Impossible to predict behaviour

• For more than a few periods ahead

• Even if you know underlying dynamic precisely!

• Alternative explanation for “it’s hard to beat the market”

– To “because it’s rational” view of EMH

Fractal Market Hypothesis (FMH)

• Proposed by Peters (1994)

– Market is complex & chaotic

– Market stability occurs when there are many
participating investors with different investment
horizons.

– Stability breaks down when all share the same horizon

• “Rush for the exits” causes market collapse

• “Stampede” for the rally causes bubble

– Distribution of returns appears the same across all
investment horizons

• Once adjustment is made for scale of the
investment horizon, all investors share the same
level of risk.
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The “Fractal Markets Hypothesis”

• Peters applies fractal analysis to time series generated
by asset markets

– Dow Jones, S&P 500, interest rate spreads, etc.

– finds a “fractal” structure

– intellectually consistent with

• Inefficient Markets Hypothesis

• Financial Instability Hypothesis

– Based upon

• heterogeneous investors with different
expectations, different time horizons

– trouble breaks out when all investors suddenly
operate on same time horizon with same
expectations

The “Fractal Markets Hypothesis”

• “Take a typical day trader who has an investment horizon of five
minutes and is currently long in the market.

– The average five-minute price change in 1992 was -0.000284
per cent [it was a “bear” market], with a standard deviation
of 0.05976 per cent.

• If … a six standard deviation drop occurred for a five minute
horizon, or 0.359 per cent, our day trader could be wiped out if
the fall continued.

• However, an institutional investor–a pension fund, for example–
with a weekly trading horizon, would probably consider that drop
a buying opportunity

– because weekly returns over the past ten years have
averaged 0.22 per cent with a standard deviation of 2.37 per
cent.

The “Fractal Markets Hypothesis”

• In addition, the technical drop has not changed the
outlook of the weekly trader, who looks at either
longer technical or fundamental information.

• Thus the day trader’s six-sigma [standard deviation]
event is a 0.15-sigma event to the weekly trader, or
no big deal.

• The weekly trader steps in, buys, and creates
liquidity.

• This liquidity in turn stabilises the market.” (Peters
1994)

The “Fractal Markets Hypothesis”

• Peters uses Hurst Exponent as another measure of chaos
in finance markets

• Didn’t have time to complete this part of lecture

• In lieu, next slides extract Chapter 7 of Chaos And
Order In The Capital Markets

– Explains how Hurst Exponent Derived

• Chapter 8 (in Reading Assignment) applies Hurst
Exponent to Share Market…

– Read these next slides before reading Chapter 8

• Not expected to be able to reproduce Hurst
technique

• But to understand basic idea

• And how it shows market structure “fractal”

– Rather than “random”

The “Fractal Markets Hypothesis” The “Fractal Markets Hypothesis”
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The “Fractal Markets Hypothesis” The “Fractal Markets Hypothesis”

The “Fractal Markets Hypothesis” The “Fractal Markets Hypothesis”

The “Fractal Markets Hypothesis” The “Fractal Markets Hypothesis”
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The “Fractal Markets Hypothesis” The “Fractal Markets Hypothesis”

The “Fractal Markets Hypothesis” The “Fractal Markets Hypothesis”

Mandelbrot Set

3D MANDALBROT
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