Behavioural Finance

Lecture 05 Fractal Finance Markets

Overview

- Market predominantly not random
- But pattern of market movements very hard to work out
- Fractal markets hypothesis
- Market dynamics follow highly volatile patterns

Recap

- Last week
- Data strongly contradicts Capital Assets Pricing Model
- Early apparent success a quirk
- Short data series analysed by Fama etc.
- Coincided with uncharacteristic market stability
- Market highly volatile
- Follows "Power Law" process
- Any size movement in market possible

The dilemma

- CAPM explained difficulty of profiting from patterns in market prices
- Via "Technical Analysis" etc.
- On absence of any pattern in market prices
- Fully informed rational traders
- Market prices reflect all available information
- Prices therefore move randomly
- Failure of CAPM
- Prices don't behave like random process
- Implies there is a pattern to stock prices
- Question: if so, why is it still difficult to profit from market price information
- Answer: Fractal Markets Hypothesis..

Fractals

- What's a
fractal???

A self-similar pattern in data generated by a highly nonlinear process..

- Solution to question "is the square root of 2 rational?"
- Equal to ratio of two integers?
- No!
- Fractals similar:
- Can we describe landscapes using standard solids?
- Solid cubes, rectangles, etc?

Fractals

- Does Mount Everest look like a triangle?

- Yes and No
- Not like a single pure triangle
- But maybe lots of irregular triangles put together..
- Mandelbrot invented concept of "fractals" to express this
- Real-world geography doesn'† look like standard solid objects from Euclidean Geometry
- Squares, circles, triangles...
- But can simulate real-world objects by assembling lots of Euclidean objects at varying scales..

Fractals

For example, simulate a mountain by manipulating a triangle:

- Start with simple triangle
- Choose midpoints of three sides
- Move them up or down a random amount
- Create 4 new triangles;
- Repeat

- Resulting pattern does look like a mountain..

Fractals

- A single point has dimension zero (0):
- A straight line has dimension 1:
- A rectangle has dimension 2:

- How to work out "sensible" dimension for irregular object like a mountain?
- Consider a stylised example: the Cantor set...

Fractals

- Mandelbrot (who developed the term) then asked "How many dimensions does a mountain have?"
- All "Euclidean" objects have integer dimensions:
- A line: 1 dimension
- A square: 2 dimensions
- A sphere: 3 dimensions
- Is a picture of a mountain 2 dimensional?
- Maybe; but to generate a 2 D picture, need triangles of varying sizes
- If use triangles all of same size, object doesn't look like a mountain
- So maybe a 2D photo of a mountain is somewhere between 1 dimension and 2?

Fractals

- Take a line:
- Remove middle third:

- 1 dimensional (like a solid line):
- 0 dimensional (like isolated points):
- Or somewhere in between?
- A (relatively) simple measure: "box-counting" dimension...

Fractals

- How many boxes of a given size does it take to cover the object completely?
- Define box count so that Euclidean objects (point, line, square) have integer dimensions
- Dimension of something like Cantor Set will then be fractional: somewhere between 0 and 1
- Box-counting dimension a function of
- Number of boxes needed \boldsymbol{N}
- Size of each box ε as smaller and smaller boxes used
- Measure is limit as size of box ε goes to zero of $\frac{\ln (N)}{\ln (1 / \varepsilon)}$
- Apply this to an isolated point:
- Number of boxes needed-1, no matter how small
$-1 / \varepsilon$ goes to infinity as box gets smaller

Fractals

- Single point:

$$
\lim _{\varepsilon \rightarrow 0} \frac{\ln (N)}{\ln (1 / \varepsilon)}=\lim _{\varepsilon \rightarrow 0} \frac{\ln (1)}{\ln (1 / \varepsilon)}=\lim _{\varepsilon \rightarrow 0} \frac{0}{\ln (1 / \varepsilon)}=0
$$

- Many points:
(图
圆
- Same result:
- $\operatorname{Ln}(N)$ equals number of points (here $N=4 ; \ln (4)=0.7)$
- here $\varepsilon=1 / 64 ; \ln (1 / \varepsilon)=4.2$; tends to infinity as $\varepsilon \rightarrow 0$
- Any number divided by infinity is zero...
- Works for a line too:

Fractals

- What about Cantor set? Line 1 unit long
- Remove middle third: $26, *=53+A=2,=1-3$
- Repeat:

4-boxes $N=4=22$

- Formula for each line is:
- Number of boxes (N) equals 2 raised to power of level - Zeroth stage $2^{0}=1 ; 1^{\text {st }} 2^{1}=2$ boxes; $2^{\text {nd }}$ stage $2^{2}=4 \ldots$
- Length of box $=(1 / 3)$ raised to power of level
- Zeroth $(1 / 3)^{0}=1 ; 1^{\text {st }}(1 / 3)^{1}=1 / 3 ; 2^{\text {nd }}(1 / 3)^{2}=1 / 9$
- Dimension of Cantor set $=\lim _{\varepsilon \rightarrow 0} \frac{\ln (N)}{\ln (1 / \varepsilon)}=\lim _{\varepsilon \rightarrow 0} \frac{\ln \left(2^{n}\right)}{\ln \left(1 / 3^{n}\right)}=\frac{\ln (2)}{\ln (3)} \approx 0.63$

Fractal Markets

- Raw DJIA daily change data is Actual DJIA Daily Percent Change

- Differences pretty obvious anyway!
- But let's derive Box-Counting Dimension of both..
- First step, normalise to a 1 by 1 box in both directions:

Fractals

- So what's this got to do with Stock Markets?
- Basic idea behind fractals is measuring roughness - See Mandelbrot's lecture at MIT on this
- Euclidean objects (points, lines, rectangles, spheres) are "smooth"
- Slope changes gradually, everywhere differentiable
- Have integer dimensions
- Real objects are rough
- Slope changes abruptly, everywhere discontinuous
- Have fractal dimensions
- Stock Exchange data has "fractal" rather than "integer" dimensions, just like mountains, Cantor Set, river flows.
- Let's check it out:

Fractal Markets

- Data for working out Box Dimension now looks like this:

- Now start dividing graph into boxes
and count how many squares have data in them:

Fractal Markets

- Then apply box dimension rule: Dimension $=\lim _{\varepsilon \rightarrow 0} \frac{\ln (N)}{\ln (1 / \varepsilon)}$

- So fractal dimension of DJIA is roughly 1.67
- What about random data?

Fractals and Structure

- An example: Logistic equation $L_{+1}=(1+a) \cdot L_{+}-b \cdot L_{+}^{2}$
- Developed to explain dynamics of animal populations
- Some "prey" animals (e.g. Lemmings, Red Crabs)
- Give birth on same day every (Lunar!) year
- Huge numbers born relative to population
- Survival tactic
- Big feast for predators on that day
- But most of prey survive because predators full!
- But tendency for population explosions/collapses
- Large number survive one year;
- Population exceeds land carrying capacity
- Big death levels too...

Fractals and Structure

- Truly random process has no structure
- Say $1^{\text {st }} 3$ tosses of coin = "Heads"
- Even though odds of 4 Heads in row very small $(6 / 100)$
- Odds next toss = "Heads" still $\frac{1}{2}$
- Past history of tosses gives no information about next
- Fractal process has structure
- Some dynamic process explains much of movement
- But not all!
- Some truly random stuff as well in data
- But...
- Process may be impossible to work out;
- May involve interactions with other systems; and
- Even if can work it out, difficult to predict

Fractals and Structure

- Logistic equation models this in 4 ways:
"Discrete" time since births $\quad t$ =year of births occur once each year

High value for a-lots of \quad Negative b times L squared children per adult captures overcrowding effect on death rate

- Can also be expressed as $x_{t+1}=\alpha x_{+}\left(1-x_{+}\right)$
- System is realistic "toy" model
- Completely deterministic (no random noise at all); but - Behaves "chaotically" for some values of a \& b (\& α)

Chaos?

- One of several terms
- Chaotic
- Complex
- Used to describe
- Deterministic systems (maybe with some noise)
- That are highly unstable \& unpredictable
- Despite existence of underlying structure..
- Lemmings as an example..

Chaos

- For some values of a, a stable population:

- For $a=2$, a cyclical population: up one year, down the next

Chaos

- For higher value ($a>2.5$), a "4 cycle"
- Population repeats 4 values cyclically forever:

[99 \rightarrow InitialNumber $\$ Leemings $\rightarrow \square \square \square^{656}$
- For higher value still ($a>2.58$), an "8 cycle"

Chaos \& Complexity

- Many other instances of chaotic \& complex systems
- Basic features:
- Current value depends on previous value
- Unlike random process, or EMH
- In a highly nonlinear way
- Subtracting square of number (Logistic)
- Two variables multiplied together (Lorenz)
- Patterns generated unpredictable
- But structure beneath apparent chaos
- "Self-similarity"
- One of earliest \& most beautiful: the Mandelbrot Set

Mandelbrot Set

- Generated by incredibly simple rule:
- Take a number Z
- Square it
- Add a constant
- If the magnitude of the number exceeds 2 , keep going
- Otherwise stop
- Just one complication
- Z \& C are "complex numbers": $x+i y$ where $i=\sqrt{-1}$
- Complex Numbers fundamental concept in physics
- Essential to understand cyclical systems (eg electricity)
- Represented on $x-y$ plot

Complex Numbers!

- Real numbers on the horizontal
- "Imaginary" numbers (multiples of square root of minus one) on the vertical:

Mandelbrot Set

- Black bits are parts where height is zero

Mandelbrot Set

- Main relevance of chaos \& complexity theory to finance..

Chaos, Complexity \& Finance

Superficially random behaviour can actually have deterministic causes
If sufficiently strong feedbacks

- Subtract square of number of lemmings from number of lemming births
- Two variables times each other in Lorenz

System can display "chaos"

- Aperiodic cycles ("booms and busts")
- Impossible to predict behaviour
- For more than a few periods ahead
- Even if you know underlying dynamic precisely!

Alternative explanation for "it's hard to beat the market"

- To "because it's rational" view of EMH

Fractal Market Hypothesis (FMH)

- Proposed by Peters (1994)
- Market is complex \& chaotic
- Market stability occurs when there are many participating investors with different investment horizons.
- Stability breaks down when all share the same horizon
- "Rush for the exits" causes market collapse
- "Stampede" for the rally causes bubble
- Distribution of returns appears the same across all investment horizons
- Once adjustment is made for scale of the investment horizon, all investors share the same level of risk.

The "Fractal Markets Hypothesis"

Peters applies fractal analysis to time series generated by asset markets

- Dow Jones, S\&P 500, interest rate spreads, etc.
- finds a "fractal" structure
- intellectually consistent with
- Inefficient Markets Hypothesis
- Financial Instability Hypothesis
- Based upon
- heterogeneous investors with different expectations, different time horizons
- trouble breaks out when all investors suddenly operate on same time horizon with same expectations

The "Fractal Markets Hypothesis"

"Take a typical day trader who has an investment horizon of five minutes and is currently long in the market.

- The average five-minute price change in 1992 was - 0.000284 per cent [it was a "bear" market], with a standard deviation of 0.05976 per cent.
If ... a six standard deviation drop occurred for a five minute horizon, or 0.359 per cent, our day trader could be wiped out if the fall continued.
However, an institutional investor-a pension fund, for examplewith a weekly trading horizon, would probably consider that drop a buying opportunity
- because weekly returns over the past ten years have averaged 0.22 per cent with a standard deviation of 2.37 per cent.

The "Fractal Markets Hypothesis"

- In addition, the technical drop has not changed the outlook of the weekly trader, who looks at either longer technical or fundamental information.
- Thus the day trader's six-sigma [standard deviation] event is a 0.15 -sigma event to the weekly trader, or no big deal.
- The weekly trader steps in, buys, and creates liquidity.
- This liquidity in turn stabilises the market." (Peters 1994)

The "Fractal Markets Hypothesis"

- Peters uses Hurst Exponent as another measure of chaos in finance markets
- Didn't have time to complete this part of lecture
- In lieu, next slides extract Chapter 7 of Chaos And Order In The Capital Markets
- Explains how Hurst Exponent Derived
- Chapter 8 (in Reading Assignment) applies Hurs \dagger Exponent to Share Market...
- Read these next slides before reading Chapter 8
- Not expected to be able to reproduce Hurst technique
- But to understand basic idea
- And how it shows market structure "fractal"
- Rather than "random"

The "Fractal Markets H	ypothesis"
	$5 \pm$
± 2.5	5axava
	$\pm 2 \mathrm{za}$
	=
${ }_{6}$	
	+ow
	$\pm \pm$
	上, V^{2}
2-w-	$5 \mathrm{x}= \pm= \pm$
2 F 2 5 2	

