Behavioural Finance

Lecture 10 Out of Sequence... Modelling Endogenous Money

Circuit model of endogenous money: recap

- All exchanges 3 sided in Monetary economy
 Seller
 - Jelle
 - Buyer
- Bank recording transfer of money from buyer to seller
 System driven by loans from bank sector to firm sector
- Lender
 - Must not exploit "seignorage" if system to function
 - Can & does create credit money
 But can't "spend own notes"
- Necessarily dynamic process
 - Must be modelled using dynamic tools
 - Conventional economic tools (diagrams, partial & general equilibrium) are not dynamic...

Aside on subject content

- 2 reasons for change from investor & market behaviour
 To financial macroeconomics
- (1) Change in teaching staff just before session
- Subject was to have been ¹/₂ me on behavioural economics + ¹/₂ Craig Ellis on behavioural finance
- Not possible when Craig seconded to work on AUQA
- (2) My perspective on implications of behavioural research on economics & finance
 - Role of agents in economic theory overstated
 - Better for economics to go "back to basics"
 - Consider dynamics of economic-financial system first
 - Later add agent behaviour as embellishment of this fundamental knowledge...

Aside on subject content

- Fundamental scientific behaviour not practised by economics in general
 - Treat economy as dynamic system
 - Build causal model of relations between its components
 - Instead, nonsense of treating economy "as if" static
 Theory ignores feedbacks, non-equilibrium behaviour, basic issues of change, time
- To "do the basics", have to do dynamic analysis where causal relations between entities clearly stated
 - So you need to know the basics of dynamic analysis
 - But you haven't ever been taught them before...
 - $\boldsymbol{\cdot}$ So unavoidable introductory stuff in this lecture
 - But also world's first model of "the circular flow"

Aside on subject content

This lecture

- Explains basics of dynamic modelling
- Shows how to simulate dynamic systems
- Develops model of Monetary Circuit that
 - Confirms that a pure-credit economy "works"
 - Capitalists can borrow money, invest & make a profit as Keynes thought
 - Graziani "losses in the Circuit" arguments result from not understanding dynamic analysis
- Model is world's first explicitly monetary "circular flow" model of the economy.

Dynamic modelling—an introduction

- Dynamic systems necessarily involve time
- Simplest expression starts with definition of the percentage rate of change of a variable:
- "Population grows at 1% a year"
 - Percentage rate of change of a variable y is
 Slope of function w.r.t. time (dy/dt)
 - Divided by current value of variable (y)
 - So this is mathematically $\frac{1}{y}\frac{dy}{dt} = .01$
- This can be rearranged to... $\frac{dy}{dt} = .01 \times y$
- Looks very similar to differentiation, which you have done... but essential difference: rate of change of y is some function of value of y itself.

Dynamic modelling—an introduction

- Dependence of rate of change of variable on its current value makes solution of equation much more difficult than solution of standard differentiation problem
- Differentiation also normally used by economists to find minima/maxima of some function
 - "Profit is maximised where the rate of change of total revenue equals the rate of change of total cost" (blah blah blah...)
 - Take functions for TR, TC
 - Differentiate
 - Equate
 - Easy! (also wrong, as covered in earlier lecture...)
- · However differential equations...

Dynamic modelling—an introduction

• Now we have a model where the rate of change of each variable (fish and sharks) depends on its own value **and** the value of the other variable (sharks and fish):

$$\frac{1}{F} \cdot \frac{dF}{dt} = a - b \cdot S$$

$$\frac{dF}{dt} = a \cdot F - b \cdot S \cdot F$$

$$\frac{1}{S} \cdot \frac{dS}{dt} = c + d \cdot F$$

$$\frac{dS}{dt} = c \cdot S + d \cdot F \cdot S$$

 This can still be solved, with more effort (don't worry about the maths of this!):

Dynamic modelling—ar	n introduction
$\frac{d}{dt}\ln(F) = a - b \times S$	But for technical reasons, this is the last level of complexity that
$d\ln(F) = a - b \times S \times dt$	 can be solved Add an additional (nonlinearly
$\int d\ln(F) = \int a - b \times S \times dt$	related) variable—say, seagrass levels—and model
$\ln(F) = (a - b \times S) \times t + c$	But there are other ways
$F = C_1 \times e^{(a-b\times S(t))\times t}$	 Mathematicians have shown that unstable processes can be simulated
$S = C_2 \times e^{(-c+d \times F(t)) \times t}$	 Engineers have built tools for simulating dynamic processes

Dynamic modelling—an introduction

- · That's the "hard" way; now for the "easy" way..
- Differential equations can be simulated using flowcharts
 The basic idea...
 - Numerically integrate the rate of change of a
 - function to work out its current valueTie together numerous variables for a dynamic system
 - Consider simple population growth:
 - "Population grows at 2% per annum"

But first another approach to dynamics...

- Flowchart modelling fabulous for simulation
- But difficult for economists to understand
 Another approach I've developed is much more natural
- for accounting for financial flows: - Use "Double Entry Book-Keeping" to record flows
- The idea
 - Each column is an account
 - Rows record transactions between accounts
 - Add up columns, and you get dynamic model...
- Approach still in its infancy
 - But much easier to follow than flowcharts...

- "Double entry accounting" as a dynamic system..
- Each column represents a particular stock
- Each row entry represents a flow between stocks
- Specify relations between system states across rows...

Sum of column is "differential equation" for stock
 Continuous time, not "discrete" time
 Strictly monetary model developed...

Basic Circuitist Dilemmas solved

Initial Circuitist Model (Graziani pp. 4-6)

- "The first step in the economic process is the decision taken by banks of granting credit to firms in order to enable them to start production..."
- · Bank doesn't need reserves from which to lend
 - Bank status allows it to create money "from nothing"
 Book-keeping action of
 - Making entry of \$L in deposit account
 - And simultaneous \$L entry in debt account
 - Creates loan and money simultaneously...
 - "The first step in the economic process is the decision taken by banks of granting credit to firms in order to enable them to start production" (4)

Basic Circuitist Dilemmas solved

- So system starts with Bank Sector making loan of \$L to Firm Sector
 - Two accounts needed:
 - Money added to Deposit Account F_D
 - \cdot Record of Debt kept in Loan Account FL $\rm F_L$
 - Amount of \$L entered into both initially
- Use double entry-table to record *flows* initiated by loan
 - Compound interest on loan
 - Payment of interest on deposit balance
 - All money transfers begin & end in bank accounts...

Basic Circuitist Dilemmas solved						
Loan contract gives bank right to compound debt at rate of	Type of Account (Bank point of view)	Asset	Liability	Income		
interest on loans Interest	Name	Firm Loan	Firm Deposit	Bank Deposit		
payment from	Symbol	FL	F⊳	B _D		
Interest	Flows between accounts					
payment from firm to bank	Compound A Interest					
Bank records	Deposit Interest		+B	۹ ۲		
interest as	Pay Interest	- C	-C	+C		
outstanding debt	Sum of flows	A-C	B-C	C-B		

Basic Circuitist Dilemmas solved								
 Firm pays interest to Bank at loan rate r₁; 								
• Bank pays interest to Firm at deposit rate rs;								
• So A is interest rate on debt (r.) times debt F .:								
• B is interest rate on deposits (r _b) times deposit F _b :								
• If firm nay all interest on debt C is the same as A								
- (and debt F_L therefore remains constant)								
Type of Account Asset Liability Income								
Name Firm Loan Firm Deposit Bank Deposit								
Symbol F _L F _D B _D								
Compound Interest A=rL.FL								
Deposit Interest +B=r _D .F _D -B								
Pay Interest	Pay Interest - C=r _L .F _L -C +C							
Sum of flows O r_D.F_D-r_L.F_L r_L.F_L-r_D.F_D								

 $r_D.F_D-r_L.F_L$ $r_L.F_L-r_D.F_D$

Basic Circuitist Dilemmas solved

- So our basic model so far is that:
 - Rate of change of firm sector's debt = zero
 - Rate of change of firm sector's deposit account is interest payments on deposit minus interest payments on loan
 - $\cdot \mathbf{r}_{\mathrm{D}}.\mathbf{F}_{\mathrm{D}}-\mathbf{r}_{\mathrm{L}}.\mathbf{F}_{\mathrm{L}}$
 - Rate of change of bank sector's income account is the opposite:
 - $r_L.F_L-r_D.F_D$.
- Much more needed, but we can model this already...
 - Firstly, the system I use to create the model
 - Written in Mathcad, but reproducible in any modern mathematics program (Mathematica, Maple, etc.) with symbolic & numeric processing routines:

Basic Circuitist Dilemmas solved							
 Need one more account for this: & 2 new activities "Household Deposit" H_D Workers paid wages Table now has 4 columns: Consumption 							
Type of Account Asset Liability (Deposits by non- bank public) Income							
Name	Firm Loan	Firms	Households	Bank			
Symbol	FL	F⊳	Η _D	B _D			
Compound Interest	A						
Deposit Interest	+B -B						
Pay Interest	-A -A Wards +A						
Pay Wages WSC Bankerstronsume							
Interest on HH			+D	-D			
Consume		E+F	-E	-F			
Sum of flows	0	B+E+F-(A+C)	C+D-E	A-(B+D+F)			

• Is the system viable???

 Bank accounts will stabilise if flows in equal flows out: 						
Ту	pe of Account	Asset	Liabi	lity	Income	
Na	me	Firm Loan	Firms	Households	Bank	
Sy	mbol	FL	F _D	Н _р	BD	
Cor	npound Interest	А				
De	posit Interest		+B		-В	
Pay	/Interest	-C(=-A)	-С		+C	
Ραγ	/ Wages		-D	+D		
HF	l Interest			+E	-E	
Co	nsume		F+G	-F	-G	
Sum of flows 0 B+F+G-(C+D) D+E-F C-(B+E+G)						
Loans stable since repayments=compounding						
 Firm deposit stable if B+F+G=C+D 						
- Deposit Interest + Sales = Loan Interest + Wages						
 Household deposit stable if D+E=F 						
- Worken Consumption - Wasse + Interest on HH Deposite						

- Loan interest = Deposit Interest + Banker Consumption

Basic Circuitist Dilemmas solved Doesn't sound too difficult - unlike Graziani's arguments that constant economic activity requires rising debt levels to pay interest ... New system is: • New parameters w: rate of flow of funds from firms to workers as $\begin{array}{c} \text{Related to belances in accounts} \\ D:=w^*F_D(t) \quad E:=r_D^*H_D(t) \quad F:=w^*H_D(t) \quad G:=\beta^*B_D(t) \end{array}$ wages for working in factories System equations are... - ω: consumption $\frac{d}{dt}F_{L}(t) = 0$ rate of workers $\frac{d}{dt}F_{D}(t) \equiv \beta \cdot B_{D}(t) + \omega \cdot H_{D}(t) + r_{D} \cdot F_{D}(t) - r_{L} \cdot F_{L}(t) - w \cdot F_{D}(t)$ - β : consumption $\frac{d}{dt}H_{D}(t) \equiv r_{D'}H_{D}(t) - \omega \cdot H_{D}(t) + w \cdot F_{D}(t)$ rate of bankers $\frac{d}{dt}B_{D}(t) \equiv r_{L}\cdot F_{L}(t) - r_{D}\cdot F_{D}(t) - \beta \cdot B_{D}(t) - r_{D}\cdot H_{D}(t)$

Basic Circuitist Dilemmas solved

Gross Incomes

- Bank obviously $r_L F_L = 5\%$ of \$100 = \$5 p.a.
- Wages obviously w.F_b = 3 x \$86.029 = \$258.088 p.a.
 Notice annual wages much larger than initial loan
- \$L = \$100
- But what are profits???
 - Clue given by fact that wages much larger than initial loan
 - Money "turns over" several times in a year
 Turnover period (time from spending M on production & getting M+ back in sales) one part
 - Wages represent workers share in surplus of outputs over inputs
 - Share of surplus going to capitalists other part

Basic Circuitist Dilemmas solved Call capitalist share of surplus s Then workers get (1-s) Call turnover period τ_s Fraction of a year that it takes to go from M to M+ Time between initial outlay (hire workers, pay wages) & receiving money from sale of output So w = (1-s)/τ_s And wages are ((1-s)/τ_s).F_D Profits are (s/τ_s).F_D So given w=3, one possibility is Capitalists share of surplus from production = 25% Turnover period from M to M+ is 3 months= ¼ year Profits = 0.25/¼.F_D = 1.0 x \$86.029 = \$86.029 p.a.

Basic Circuitist Dilemmas solved

- What about paying back debt?
 - Debt account a record of amount you owe to bank
 - Can be reduced by repaying debt
 But isn't "negative money"
- · So another account needed to record debt repayment
 - Bank Reserves (B_R)
 - Repayment goes here
 - Seignorage if went into B_D account
 - Banks spending money they created
 - Bank reduces record of outstanding debt
- 2 operations in debt repayment
 - Transfer of money *from* Firm Deposit to Bank Reserve
 - Recording of repayment on Firm Loan record.

Bank can a	also lend f	rom its R	eserves, so	2 more ro	ws:		
Type of Account Asset Liability Income							
Name	Bank Reserve	Firm Loan	Firms	Households	Bank		
Symbol	B _R	FL	F _D	Н⊳	B _D		
Compound Interest A							
Deposit Interest			+B		-В		
Pay Interest -C(=-A) -C +C							
Pay Wages -D +D							
HH Interest +E -E							
Consume F+G -F -G							
Repay Debt +H -H -H							
Relend Reserves	-I	+I	+I				
Sum of flows H-I I-H+I-H							

- Repayment rate=Relending rate (H=I)
- Simulating this...

Basic Circuitist Dilemmas solved					
• The model		• The	results		
Рагателет <u>Ба</u> . – 9% <u>Ба</u> . – 1% <u>Хента</u> . – 25 <u>Бант</u> . – 100 <u>М</u> . – 3 <u>М</u> . – 26 <u>В</u> . / Given	$= 1$ $L_R := \frac{1}{7}$ $R_R := 2$ B_I		* * * * * * *		
$\frac{d}{dt} \mathbf{B}_{\mathbf{R}}(t) = \mathbf{L}_{\mathbf{R}'} \mathbf{F}_{\mathbf{L}}(t) - \mathbf{R}_{\mathbf{R}'} \mathbf{B}_{\mathbf{R}}(t)$	B _R (0) = 0 F _I	3 ⁽¹⁾ 80			
$\frac{d}{dt}F_{\underline{L}}(t) \equiv R_{\underline{R}}\cdot B_{\underline{R}}(t) - L_{\underline{R}}\cdot F_{\underline{L}}(t)$	$F_L(0) = Loan$ H	D3 ^(t) 60 + D3 ^(t) 40			
$\frac{d}{dt}F_{D}(t) \equiv \beta \cdot B_{D}(t) + \omega \cdot H_{D}(t) + r_{D} \cdot F_{D}(t) - r_{L} \cdot F_{L}(t) - w \cdot F_{D}(t) - L_{R} \cdot F_{L}(t) + R_{R} \cdot B_{R}(t) + R_{R} \cdot R_{R}(t) + R_{R$	FD(0) = Loan B	03 ^(t) 20			
$\frac{d}{dt}H_D(t) \equiv r_D \cdot H_D(t) - \omega \cdot H_D(t) + w \cdot F_D(t)$	$H_{D}(0) = 0$		*********		
$\frac{d}{dt}B_{D}(t) \equiv r_{L}\cdot F_{L}(t) - r_{D}\cdot F_{D}(t) - \beta \cdot B_{D}(t) - r_{D}\cdot H_{D}(t)$	$B_{D}(0) \equiv 0$	- 2000	10 20		
Wages, Profits & Interest with Repayment	Wages 3(Years) Profile 3(Years) Interest 3(Years) Positive Capitalis economy make a	book Bank Reserver book Bank Reserver book Firm Loan book Firm Loan book Bank Bala book Bank Bala sts in pure y can borre profit	$\begin{array}{c} \underset{i}{\overset{\text{we}}{\underset{j}{\underset{j}{\underset{j}{\underset{j}{\underset{j}{\underset{j}{\underset{j}{\underset$		

Basic Circuitist Dilemmas solved

- Loan of \$L causes much more than \$L turnover per year
- Profits and Wages earned from flows initiated by loan
 - Easily exceed Loan itself
 - \$321 annual incomes from \$100 loan
 - So payment of interest easy
 - Just \$4.67 gross from profits of \$80.30
 - Repayment also easy
 - And a discovery: not only "Loans create Deposits"
 - But "Loan Repayment creates Reserves"
 - Reserves stabilise at \$6.67 from zero start
- A pure credit economy "works"
- No necessity for a financial crisis
- But they do occur—can we work out why?

Next week

- Extending model to include production
- Explaining values of parameters
- · Working out why lenders like lending too much money
- Expanding model to include growth
- Modelling a "credit crunch"
- Introducing the Financial Instability Hypothesis